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SCATTERING MATRIX ANALYSIS OF
SURFACE ACOUSTIC WAVE REFLECTORS AND TRANSDUCERS

Carl Michael Panasik, Ph.D.
Coordinated Science Laboratory and
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1980

The phased periodic array scattering parameters [1] have been modified
and corrected for use as a single electrode, mixed units, scattering matrix
consisting of one electrical and two acousti: ports. These scattering’
parameter analytical expressions are functions of material constants,
electrode geometry, and frequency. Tne three port single electrode
scattering matrices are acoustically cascaded to produce 3 three port
device scattering matrix which takses into account all finger interactions
(acoustic and electric) for the combined effects of piezoelectric and
mechanical scattering. The analysis agrees well with experimental
measurements of input admittance, electro-acoustic transfer function, and
acoustic transmission and reflection coefficients as functions of
frequency. Analysis results for the complete modeling of transducers with

floating electrodes are also presented.
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I. Introduction

The modeling of surface acoustic wave transducers and reflectors has
been discussed by several authors. Each model is restricted to transducers
or reflectors and most are valid over a limited frequency range. This work
provides energy conservation based corrections for a mixed units scattering
matrix [1,2] recently derived from an infinite array analysis. This thesis
is the first publication to present results involving transducers with
floating electrodes and is a general analysis which models any periodic

device over all frequencies of interest.

This thesis presents a universal analysis of surface acoustic wave
transducers and finite length reflectors. The final result of this one
dimensional analysis is a 3 x 3 mixed units scattering matrix description

of a reflector or transducer whose parameters are functions of frequency.

This analysis:

#® is applicable to all periodic structures, where metallization
ratio and/or electrode spacing may vary slowly in the direction
of propagation;

#* models interdigital transducers, regardless of connection
circuitry, including arbitrary voltage electrodes, floating
electrodes, and electrically loaded reflector arrays;

% is valid for all frequencies of interest;

* is based on analytical expressions involving material
constants, electrode geometry and individual electrode circuitry; |

®* provides the input admittance, electrical to acoustic transfer
funetion and acoustic to acoustic transfer function (transmission
and reflection);

% is in a form that directly accepts a recently derived set of
mechanical scattering coefficients (27,28].

S
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A number of useful techniques have been developed to analyze SAW reflectors
and transducers. A brief summary of these techniques and their features

adds insight to the capabilities of this mixed units scattering matrix

approach.

Realizing that the location of interdigital electrodes corresponds to
the time delayed signal generated by an incident acoustic impulse, several
authors have described an impulse response model [3,8,29]. This model is
particularly applicable to weak coupling piezoelectric materials where tap
to tap interactions are neglected. The electro-acoustic transfer function
of each tap is assumed to be flat over the bandwidth of interest and the
tap weights are the Fourier transform of a desired frequency response,
making first order modeling a simple process. Hartmann extended this model
to include the calculation of transducer impedances and the effect of
electrical loading on filter response (second order regenerated
reflections) via an electrical port equivalent circuit [4,6]. He points
out that another frequency dependent acoustic source could be Engan's
Fourier series solution [7] for the electrostatic field produced by the
electrodes of an infinite array, but limited his analysis to the
fundamental response. Arrays which use overlap weighting with a fixed

voltage are modeled using a channelized approach similar to one described

by Tancrell and Holland [8].

In their initial strong coupling, transmission line analysis Smith et
al. [4]) presented two infinite array models ("in-line" and "crossed field")
derived from the Mason bulk wave transducer equivalent circuit [5]. The
selection between the two approaches is based either upon the predominaﬁce

of an electric field normal or parallel to the surface. Smith and Pedler
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(9] extended this work by introducing 1) quarter wavelength transmission
line sections of different impedances (values are empirically derived)
representing the electrodes and gaps to model acoustic reflections, 2)
Engan's source field into their crossed field Mason bulk wave model to
analyze harmonics, and 3) missing electrodes and end effects cases to
handle finite length arrays. Their source function is the derivative of
the normal electric field component with respect to the direction of
propagation along the surface. This new source field extends the analysis
accurately to odd harmonic operation. The field equations were solved for
a number of electrode connection sequences, taking into account next
nearest neighbors. The results are presented in tabular form and are handy
for design of periodic polarity sequence transducers. The authors suggest
that the case of floating electrodes with induced charges is handled by

numerically resolving the electrostatic boundary value problem.

Although Smith and Pedler's tables are accurate near odd harmonics,
Szabo realized the need for inter-harmonic frequency analysis and applied a
Fourier transform of the displacement field as the source function in the
spectral weighting model [10]. A set of electro-acoustic transfer
functions are calculated numerically using field theory for a number of
local electrode environments. These frequency domain curves replace the
flat passband response of the delta functions used in the impulse response
models and serve as the mathematical link between such models and
experimental device behavior. The curves are used in a design prescription
to calculate the tap weights for a given frequency response. Closed form
expressions of these transfer functions for structures other than arrays of

single electrodes are difficult to obtain analytically.
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The advent of floating electrodes and capacity weighted transducers
brought about the need for a new model which does not require numerically
recalculating the field solution for each possible electrode voltage
configuration. Datta et al. [11] point out that in general, for the
impulse response model, the separation of the transducer response into an
element factor and an array factor is not possible, since the charge
distribution on each electrode is different because of neighboring
electrode effects. They calculated an element factor, referred to as the
basic charge distribution, defined as the charge induced in a grounded
array with one volt applied to the center tap. The basic charge
distribution does not change from tap to tap and extends the impulse model
to all harmonics, taking next nearest neighbors into account. This
approach, based on closed-form field theory solutions, accurately models
the electro-acoustic response of arbitrary electrode voltages and apodized
transducers. The weak coupling approximation, on which this work is based,
does not allow the prediction of acoustic reflections and frequency shift
due to the local electrode shorting of the acoustic potential wave on

highly piezoelectric substrates.

Aoki and Ingebrigsten [12] recognized the importance of reflections
and frequency shift in an infinite array. They derived the equivalent
circuit parameters of the "mixed circuit" model (a modification of Smith's
"in-line" model) from the closed form field theory dispersion relations
near resonance to obtain a non-empirically based transmission line model.
Although neighbor coupling effects when arbitrary voltages are applied (as
in floating electrodes and capacity weighted transducers) are neglected,
this dispersion relation based (strong coupling) model correctly predicts

the transducer acoustic reflection coefficient magnitude as a function of
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frequency. This analysis agrees well with experiment near the odd

stopbands. The cascaded "mixed circuits"” do not produce a stopband at the
even harmonics as field theory suggests, therefore Aoki and Hattori [13]
added a stored energy "shunt-susceptance transmission-line" model for use
at the even harmonics and showed good agreement with experiment for special

transducer configurations.

A traveling acoustic wave creates a set of phased voltages on an array
of electrodes if acoustic reflections are assumed negligible. The phase
difference between electrodes is constant for a given frequency. The
scattering matrix of a single electrode in this infinite periodic, phased
voltage, environment has been calculated from field theory by Datta and
Hunsinger {1]. The scattering matrix elements are analytical expressions
which are functions of frequency, metallization ratio, and substrate
parameters. The analysis works well on reflectors and multistrip couplers
(passive), but does not address the case of transducers in which an
arbitrary voltage is applied to each electrode, nor to fixed tap weight

transducers at non-synchronous frequencies.

These single electrode piezoelectric scattering coefficients for

infinite periodic arrays [1] have been modified for modeling finite length

periodic transducer and reflector structures. A single electrode is
represented as a 3 x 3 mixed units scattering matrix. These matrices are

| cascaded (via acoustic ports) to form an N+2 by 3 matrix that describes the
device. This matrix is then compacted into a 3 x 3 matrix which completely
defines the three port transducer or two port finite length reflector
without the use of special case look-up tables or curves. The analysis is

based on piezoelectric and mechanical parameters, accounting for both
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scattering mechanisms in slowly varying, periodic structures with arbitrary

voltages.

In section II. the modifications to the single element scattering
parameters along with the conditions required for cascading are described,
while the cascading procedure is described in section III. The
interpretation of the composite scattering matrix is discussed in section
IV. along with a detailed comparison of the analysis with experimental
results for reflectors and single (solid) and double (split) electrode
transducers with varying loads at any frequency. This section includes a

comparison of experiment with theory when the added mechanical scattering

is taken into account. Transducers with floating electrodes are discussed

in section V., with a conclusion in section VI.

T
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II. Single Electrode Mixed Units Scattering Parameters

This section describes how the scattering parameters [a'] for a phased
array transducer (Fig. 1a) are applied to determine the mixed units
scattering matrix [m] for a single electrode unit cell in a grounded array
(Fig. 1b). The mixed units scattering matrix characterizes the three port
unit cell. The two acoustic ports are characterized by positive and
negative traveling acoustic waves, while the electrical port is defined in
teras of the most conveniently measured parameters, voltage and current.

The mixed units scattering parameters for the single electrode, unit cell

are of the form

i 11 T2 M3 Ay
Mar] = | By @y By Biut (n
& %31 %32 %33 it

where Ai is the positive propagating wave (open surface electrical

potential) as it enters the ith electrode, B is the negative propagating

ie1
wave and Ii is the current induced. The unit cell has the properties of
being symmetrical and lossless. The parameters m11 2 m22’ m12 = m21, and

m13 = m23 are dimensionless while m31 = m32 and m33 have the units of mhos.

Also, B,3 is related to my, by a constant (derived in Appendix I.B.).

The single electrode scattering matrix is evaluated from the
previously derived phased array results by noting that the single tap and
phased array transducers are identical when the impressed voltage (Vo)
equals zero. This allows the first two columns of the [m] matrix to be set

equal to their phased array matrix counterparts (equation (23) in [1]).
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Figure 1. Derivation of single electrode scattering matrix. (a)
ith

Phased array transducer. (b) Single electrode in position, unit cell.

(¢) Electro-acoustic transfer mechanism, voltages as in (b) with induced

charge (- - =),
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When a voltage is applied to one electrode in a grounded array a
charge distribution is induced under all adjacent electrodes. Acoustic
waves are generated by each of the charged electrodes and the total wave
generated is the sum of all the contributions (A') as shown in Fig. te.

The electro-acoustic transfer function (n13 2 n23) of the :I.th electrode in

due to the voltage applied. The model assumes that the entire wave is

generated in the ith electrode. Each contribution of A' is phase shifted

ith

to the center of the electrode and summed to give the total

i a grounded array is defined in terms of the total acoustic wave generated
|

; electro-acoustic transfer function. The equations for m13 and m23 are the
charge distribution (¢ (s,4 ), equation (7) in [2]) multipied by the
factor ( Av/v)(p/epoéo) where A v/v is half the piezoelectric coupling
coefficient, p is the spacing between electrodes and Ep * €° is the

effective substrate dielectric constant.

The current entering the electrode when no incident acoustic waves are
present is represented by a complex number (m33, derived in section II.B.).
The real part arises due to electrical to acoustic power conversion which
is proportional to the coupling coefficient. The imaginary part is the
electrostatic capacitive admittance based on the non-piezoelectric

properties of the material. For simple periodic voltage transducers

(ie. single or double electrode) this capacitance is the capacitance per

. pair (for example, see equation (14) in (6]), while for devices with

arbitrary voltage electrodes, an inter-electrode capacitive admittance ]
|

matrix (derived from equation (8) and (9) in [2]) is added during the

cascading process (section V.).
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The weak coupling scattering parameters [m'] (referenced to the

electrode center) are tabulated here for convenience.

Acoustic dependent

m'11 3 m'zz 3 j — . Z‘H'(Si'N).

v
¥ -1 (-cosd) P (cosd)
5'% ,LPZ‘H-Zs—m(c“A) + N-m+s M+2s-1 J (2a)
) * Ps_l(-cosA)
[] ) !
B'2 = @'y, 21+ jA= 1+j%l . 2n(s+N) .
N N-am
- -1 P -cosd -
uzoa LP (cost) + (-1) N-:n-t-s( cosd) PN(cosA) |
m L mel P’_l('COCA) 4
(2b)
m'31 z m'32 : juw (€p+ GO) W. 2u(s+N).
N N-
S . (-1)7"™p_ _(cosd) P (-cosd)
s-1 N-m+s I
mZt)a“‘ LPN-nH-s (cosd) + Ps_l(-cosA) J
(2¢)
Voltage dependent
2
I AN % 2sioms Py (cosd) (2d)

Ps-l (-cosd)

Pn ts the n'B Legendre polynomial
Av/v is the half the piezoelectric coupling coefficient

N = integer(2f/ ro)

f'o s open surface velocity/electrode spacing = v/2p
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s s Zf/fo - N

>

zuw ( M being the metallisation ratio)
o 1is the normalized radian frequency

€ 13 the substrate dielectric constant
P

W is the acoustic beam width

The ay values are found from equations (9) and (24) in [1). The derivation

of @33 is found in section II.B.

This (m'] matrix uses the weak coupling approximation which assumes
that the incident (or generated) wave amplitude is constant while
traversing the electrode region. This approximation is quite good, however
a close inspection of the [m'] matrix will show that energy conservation is

1!
original single electrode matrix are accumulated and magnified by the

not precisely maintained (im' 12 + :m'21:2 # 1). Any errors in the

cascading process. Therefore, the initial terms [m'] are corrected (to
{m]) by accounting for wave growth under the electrode. A first order
effect (2b) is the phase shift (8 = jA) of m',,. As will be shown, the
second order correction requires a decrease in the magnitude of m'21. The

problem separates into the shorted case (acoustic terms only) and the

externally electrical loaded electrode case.
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A. Shorted Case

The shorted case involves only the acoustic terms of the mixed unit
scattering matrix [m] (essentially an acoustic 2-port), therefore only the

upper left corner is addressed

- 3

The conditions of losslessness for a 2-port require that the net input
power to a lossless-passive junction be zero for any combination of
excitation possible. That is, there is no energy absorbed in the junction.
Therefore, all of the terms of the 2 x 2 scattering hermitian matrix are
set to zero (equation (2.22) in [23]). Hence, there are four lossless

conditions:

LTI “"21’2.0 (4a)
Zp1 252

[ ) L ]

D112 4 B 218, (4b)
29, 252

lm |2 Im I2

1 - W20 o 1Mt .9 (4c)
2, 202

) a

D 12M1 & B M5 =0 (44d)
201 245

VB ade. e e e
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where 201 and 202 are the transmission line impedances at their respective

ports.

These equations with Z01 equal to Z02 for a symmetrical two port (m11

s m22 and m,, 2 m21) reduce to two equivalent and more revealing forms to

be satisfied (equation (2.25) in [23]):
2.0 (52)

]
21!
and

912 s 911 + (2!1-1) n/2. (Sb)

The modification of the acoustic terms involves calculating corrected

values of 1) the magnitude of m,,, 2) the angle of m,, and 3) the angle of

By, The transmission vector of a unit cell without a scattering element

(no electrode) is the unit vector t' in Fig. 2. When an electrode is

introduced into the unit cell, part of the transmitted wave is continuously
scattered as the wave travels under the electrode. The electrode is
conceptually divided into many point sources, each being a scatterer of
acoustic waves (small arrows in Fig. 2a). The reflections from each
section (reverse scattering) experience phase shifts (with refernce to the
electrode center) and therefore are summed as phasors (Fig. 2a) to produce

m'11, The weak coupling approximation assumes that the transmitted wave

traverses each section of the electrode unscattered and accounts for the

total forward scattering with the addition of an imaginary scattered wave

(J8) generated by the electrode (Fig. 2a). This term is negative due to
the localized electric field shorting which slows the wave as it propagates
under the electrode. When & z jA is added to the unit transmission vector,

the energy balance (5a) is not satisfied because the magnitude of m'y, (=

v _J
. : TN
ol . B A e N TR vl By T e .
»




Figure 2. Scattering coefficient vector addition, acoustic terms,

shorted case. (a) Weak coupling approximation. (b) Energy conservation

correction.
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i1 + j8 1) is greater than one. Therefore, 8 is rotated (see Fig. 2b) to
form one side of a triangle composed of |8{, the unit vector and the

magnitude of s, (as yet unknown).

The first correction is the calculation of the transmitted wave vector
(m21) magnitude. This second order correction (decrease in magnitude of
m'21) is very small. The magnitude of acoustic reflection (m'11) is also
affected by this second order correction (ie. change in all scattering

element magnitudes), but since lm'11: << :m'21} the absolute error in

im'11l is near zeroc (as is the error for all m'.

i]
magnitude of m,, is then calculated using (5a) and the magnitude of m',

i, 1j #12 or 21). The
1
The second step involves calculating the phase angle of the

transmitted wave vector angle (921) using the unit transmission vector,

18] and iM,, 1. The law of cosines is applied to the triangle formed by

these three vectors (Fig. 2b)

i, 12+ 12 - 1812

(@ 1 +
621 = cos™! 21 (6)

giving the angle of L7y referenced to the electrode center. The
transmission phase delay across the unit cell is implemented by adding a

1] t‘/f° phase shift, thus giving the corrected angle of By - Equation (5b)
for a symmetrical two port results in @, 4L PP and Dol Byse Therefore for
the third correction (5b), the angle of a,, is adjusted to be w/2 radians
from 921. The two port acoustic scattering matrix now satisfies the

lossless conditions.

»
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B. Externally Electrical Loaded Electrode Case

At this point there are & corrections remaining: the angles of 243,

. f
m23, m31, m32 and the complex value of m33 Taking the solution o m33

first, from energy considerations it is shown in appendix I.A. that the

electrical port radiation conductance is

G, = z -, ¥ * (N
a Re(m33) 5(m13m 37 * Up30 32)
If Z, is defined as the characteristic electro-acoustic impedance:

LI ' (8)

where A1 is the open surface electric potential and Pa is the total

acoustic power flow, then using (appendix I.B.)

Z., m

Dyg= = 20 31 (9
2
we find that
G, = 2 B3™3 (10)
Z0

for a symmetrical lossless 3-port and is independent of any scattering
coefficient angle. The imaginary part of electrical port input admittance
arises from both electrostatic (capacitive) and acoustic generation. The
acoustic contribution (Ba) is the Hilbert transform of the real electrical
port admittance [30]. For a single electrode the value of Ba is near zero,
because the Hilbert transform of a slowly varying Ga is very small.
Therefore, the imaginary part of @34 is only the admittance due to the

capacitance of the unit cell electrode. For a single electrode transducer,

N
B b . 5 LM :
-gimr'l,x“ .

A
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the capacitance of an electrode pair (Cp) is equal to the capacitance of
one electrode in an alternately connected array. The total single
electrode admittance is then
_2m o® 11
gy = 13 31+Jmcp (1D)

24

The solution of the U4 unknown electro-acoustic angles is now

addressed. The problem is simplified by the property of a symmetrical
3=port in which

m31 = my, (12a)

and

m13 = Dyg (12b)

These two equations along with (9) reduce the problem to one unknown angle

(for instance, 913) from which the three other angles are found.

The solution of an equation containing 913 (= arg(m13)) involves
finding the 2-port matrix equivalent to the 3-port matrix when the third
port is electrically terminated in a load (YL). Mathematically, the load
is absorbed into the third port electrical admittance. Setting the
electrical port external current equal to the load current (-VYL) and
solving for the normalized voltage at that port induced by an incoming

acoustic wave (note B2 = 0) gives:

B, Byy Byp Wyg A
A2 = my, MO, Tyq . 0 (13)
e I e T PR v

The last equation

e e s
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-VYL = 11131A1 + m33V (1l4a)

after re-arrangement and the use of (8), produces the normalized voltage

Voo o omy o 2mys

A1 m33+YL Zo(m33+YL)

(4b)

Inserting this relation into the first row as the generating voltage gives

the reflection coefficient (m11 el)
2
31 : Oyq + m13V s Wy = 2 m, 3 ST (15a)
Similarly, for the transmitted wave
2
Az - my; - 2 113 = Dyqe (15b)

Therefore the electrically loaded acoustic scattering matrix (supression of
the third port) is represented as

B m m
1] 11el T12el 1 (16)
A, My1e1 Togel B,

The same symmetrical lossless 2-port equations (5a,b) apply to this

matrix. Equation (5a)

By 12 # Imygg 2 - 1 = 0 (172)

is now

2 2 2 2

2 my3 my, - 2™3 - 1 = 0 (17b)

e ameames T DT
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which simplifies to

Re(m11 + myy) cos 8,3 + Im(my, + m,y,) sin 613 - '2 m132| = 0
124 (m33+YL)I
(17¢)
giving
0,5 = 2|0 1| 12 my 27z (mgget; )

- cos”

+ 6
myq o+ my,l

The resulting angle and the use of (9) and (12) give the values of the four

unknown angles. As a check, the angle of m11e1 is compared with the angle

of m,51 and found to satisfy (5b).

In summary, the corrected mixed units scattering coefficients

referenced to the edges of the unit cell (Fig. 1b) are:

-] -
11 2 Dy, = Im'11| ej( 123 w/2) e J"f/fo (18a)

By = mp, = (1=t 12) 172 ed¥z TG (18b)
T .t eJ813 o~ Im/2f, (18¢)
W3y = Mgy = .m'31! eJ(e13 - W) g-inr/ef, (184d)
B33 = G, + JW C, (18e)
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These single electrode scattering matrix coefficients conserve energy

for acoustic reflection, generation and detection. 1In the calculation of a

finite length device matrix, many single electrode matrices are cascaded
and the final device matrix satisfies the three port energy conservation

equations (equation (2.165) in [26]).
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III. Composite Transducer Matrix

A. Cascading

In order to analyze an entire transducer, the effects of individual
fingers and their interactions must be combined, while taking into account
the finger connection sequence. This is done by cascading 3-port mixed
units, single electrode [m] scattering matrices (18) and then compacting
the final matrix into a 3 x 3 matrix [M] describing the total array

(Fig. 3).

ol Mir M2 M3 | A

- 19
Ayt Mayy My My BNet (19)
I, My, Mg, Mg Vg

The scattering matrix cascading process starts with a single element
scattering matrix [mll (Fig. U4, equation (20)). This matrix is combined

with another adjacent [m2] matrix which may be different than the first.

B 1 1 1 2 2 2 R
1 My By B3 A B, By B2 M3 2
o1 2 2 2
Ay |7 |m21 mpp o3 B, Ay |=]|my my, myf | By | (20
1 1 1 2 2 2
11 m31 m32 m33 V1 12 m31 ﬂ32 m3 V2

The acoustic interface between the two unit cells contains two unknown
interacting acoustic waves A, and B,. The two sets of scattering equations
(20) also have two equations relating Aa and 82. These 2 equations and 2

unknowns are solved for A2 and B2 in terms of Ay, BB’ V, and V,. These are

N e o




a
Vi
15!
N 1
Ay
By
xP -1838
Figure 3. Generalized weighted transducer driven by balanced voltage
source.
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substituted into their respective locations and a new 4 x U scatter matrix

is produced which relates the electrode pair input quantities to the output

quantities.

B B'yy Bz B3 Byl A
Ay = [®'21 ®'22 ®'p3 ®'oy| | B (21)
I1 m'31 m'32 m'33 m'3u V1
I By By B'y3 ) | V2

This new matrix describing the electrode pair now becomes the left
matrix and another 3 x 3 matrix representing the third electrode is
combined with it. Each matrix has an equation relating the interacting
acoustic potentials (now A3 and 33) in terms of A1, Bu, V1, VZ, and V3.
The 2 equations with 2 unknowns are solved and a new 5 x 5 scattering

matrix for the electrode triplet is created. This process continues until

the final N+2 by N+2 array scattering matrix is found for an N electrode

device (Fig. 3).

By ] [myy mp mygomy e AT
Mo |21 B2 a3 By - - |l Bue
I, my, By, ;533-m£; R v,
. N L T PR TR TR I 22
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As stated previously, for devices with periodic electrode voltages, the
capacitive admittance is included in the single electrode scattering
matrix. For devices with arbitrary voltages, a sub matrix of capacitive
admittances (D from equations (8), (9) in [2]) is added to the admittance

sub matrix due to acoustic generation (dashed line in (22)). That is, for
1>2 and §>2

Bij total * B1j acoustic * Dii-j! (23)

This matrix (22) completely describes the interactions between the incoming
acoustic traveling wave potentials, the voltages impressed on the
electrodes and the outgoing acoustic traveling wave potentials and the
electric port induced currents. Appendix II. contains a more detailed

description of the cascading process.
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B. Compacting

The array scattering matrix can describe any periodic surface wave

device taking into account the connection sequence. -In an interdigital

transducer (IDT) the electrode connection sequence (and therefore each tap

voltage) is known apriori. Each of the electrode voltages is related to

the terminal voltage (VT) by a voltage tap weight a, (Fig. 3), where

a;=(V, /V,) (24)

Therefore in (22), m, {yp may be replaced by
’

]
m 13 2 lll13a1 + m1uaz + m1sa3 +* 4o

(25)

PR m——

0'23 = Oy3a, + W3, + mzsa3 ¥ e

and the n>2 columns are compacted into one.

B, (3, @y, @3], 1

N+1 Moy My Mpg | By, ¥

1 ™31 P32 a3l Vr

2 By Wy By3 ]
. = . . . (26)
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Therefore, if the tap voltages are known, the largest matrix is N+2 by 3

(as shown in appendix II.).

This matrix is compacted by row as well. The terminal current (IT in
Fig. 3) is the sum of the currents in the electrodes connected to one bus
bar. This current compacting is approached in much the same way as the

voltage compacting. Let bi be the current tap weight, that is the portion

of the electrode current generated by the incident acoustic wave that flows
into the positive bus bar (ie. high side, IT in Fig. 3). In most IDT
structures (but not capacitive weighted) bi will be either O or 1. In a
single electrode IDT every other b1 is 1 because every other electrode is

connected to the high side. Therefore, m3 1>2 is replaced by
1

B3y = Myyby + @y Dy + Mg by 4 ..

m"32 = myyby + Wyaby + Moy + oo 27n
"
m 33 = m'33b1 +* m'u3b2 +* m'53b3 * e
and the m>2 rows are compacted into one.
B, my Wy, B3| Ay
Ayer| = M1 By ®'p3f| By (28
IT m"31 m"32 m"3 vT

The result is the desired 3 x 3 mixed units scattering matrix (19) which

completely describes the transducer as a three port.

P R N TR
Rl
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IV. Scattering Matrix Analysis of Transducers and Reflectors

The knowledge of the total scattering matrix for a given surface wave
device tap configuration is a very powerful analysis tool. A number of

examples will be examined to show its usefulness.

A. Transducer Acoustic Reflection Coefficient

The acoustic reflection coefficient of an electrically loaded
transducer is derived from the array scatter matrix (19), (28). The
shorted transducer (VT = 0) reflection coefficient due to MEL reflections'
is M,;. The reflection coefficient of an electrode (or transducer) loaded
by an admittance is composed of two parts, the MEL reflection and a
regenerated wave. This regenerated wave is produced by the induced voltage
at the electrical port arising from an incident wave. To calculate this

voltage for the case of a transducer, BN+1 is set equal to zero, I, is the

T

load current (-VTYL) and VT is solved for as in the single electrode case
(13), (14) and (15). The M matrix equations are written as

B1 =.M11A1 + M13VT

(29)
Solving the second equation for the terminal voltage gives
M., A
VT = 31 ™M
Inserting this into the first equation results in
By = Mgy Ay - MygMg, A,
(31a)
M33+tp

*
Reflections from shorted electrodes (Mechanical-Electrical Loading).
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and the electrically loaded reflection coefficient is

r =M - M, .M

el 1 1 1
.M—§.3—- (31b)

33+YL .

As an example, the complex reflectance for a 20-pair, single electrode
(Fig. 5, inset), 0.5 duty factor (metallization ratio) uniform weighted
transducer on Y-Z lithium niobate [14] is plotted for two loads in Fig. 5.
These calculations show a calculated frequency dependent reflection
coefficient whose shape has good agreement with experiment. The authors
[15) attributed a similar difference in magnitude between theory and
experiment to the measurement method. This calculated response also agrees

with that calculated by Aoki and Ingebrigsten (Fig. 4 in [12]).

B. Transducer Radiation Conductance

The transducer radiation conductance Ga (the real part of M33)
includes the effects of regeneration, stored energy and other tap
interactions. The input conductance of a 78-pair, 0.5 duty factor,
unweighted linear transducer on Y.Z lithium niobate has been calculated and
is compared in Fig. 6 with the experimental results for a 30 MHz device
{16]. The theoretical calculation agrees very well with experiment.
Previous theories did not predict the velocity change under the electrodes.
Although Jones et al. had calculated the magnitude accurately, they were

not able to predict the 1.7% frequency shift down from fo without any

post-calculation fitting.
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Calculated radiation conductance for a 15-pair, 0.5 duty factor,
double electrode transducer 1is plotted in Fig. 7 and shows good agreement

with experiment [20]. The center frequency of this device is assumed to be

49.44 MHz.

C. Reflector Analysis

e WA WY = T ——

The scattering matr-ix approach lends itself readily to the analysis of

reflectors. The acoustic reflection coefficient of a shorted reflector is

C e e -

the same as that of a shorted transducer. The reflection coefficient of an
open isolated electrode reflector is unlike that of an open circuited (no
load) transducer, although the reflection mec-anisms (MEL and regenerated
wave) are the same. In the case of isolated electrodes, each electrode

operates as an independent (no electrical load) reflector whose induced

B ettt TR

voltage is a funetion of the incident acoustic potential. It is coave-

nient here to introduce a neutral reference potential. For an IDT this
neutral raeference is located half way between electrodes of opposite polarity,
so that one half the terminal voltage exists between each terminal and neu-

tral. Admittances are now defined from each electrode to the neutral refer-

ence, At fundamental the capacitance of each electrode to the neutral

reference is twice the electrode to electrode capacitance used previously.

B33 490 = Ga * 2chp (32)

The single electrode three port is reduced to a two port by supressing the
electrical port. The electrically loaded equations (1U4-16) (YL = 0) are
evaluated with the isolated admittance (32) and replace the shorted

acoustic terms (3) in the single electrode scattering matrix [m]




-pueqssed Joddpn (Q)

-pueqssed aamo] (B) -Jadnpsuedy

5p0J10910 8Tqnop Jjed-G) € JO 3DUBIONPUOD UOCTIBTPEY -l aunB1yg

%/}
T 0ST

i vt R

Tt ey . a———— gi—

%/}
G0 0S0  G¥O  OKO
. 0
GL0
Y
o
oS =
3
S
1G22
©
00€

. )".\,'-‘-l .

|




34
m m..m 1
m, - 13030 a, - 1332
®33 is0 B33 iso
(33)
m, |
o 23731 _ T3t
21 B2
i 033 iso m33 131

This two port matrix completely defines the open circuit, three port, unit

cell in an isolated array.

As an example, consider the case of one electrode in an infinite
array. At center frequency the single electrode acoustic reflection
coefficient magnitude for the open and short circuit cases are equal (at
0.5 duty factor) and on Y-Z lithium niobate the value of 0.01647 agrees
well with experimental results [16-19]. For the case of double electrodes
(ie. 0.5 duty factor electrodes connected in pairs), the calculated
coupling coefficient at fundamental is reduced by a factor of 0.736 from
the single electrode case. This predicts a piezoelectric transducer

1/2

coupling factor Ks = (0.046X0.736) = 0.184 compared to the experimental

value of 0.193 [12].

To find the reflection and transmission coefficients of isolated
electrode arrays, the single electrode scattering matrix (33) is cascaded
as in section III.A. (the non-acoustic terms are set equal to zero). The
calculated array acoustic transmission coefficients (shorted and open
cases) are compared with experiment ([21] (bars) for three duty factors in
Fig. 8. The device is a 100 electrode array on Y-Z lithium niobate. The
experimental values of single electrode normalized impedance (z in [21])

are used in the author's transmission line equation (with N = 100 and duty
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factor = tp (author's notation) = 0.5) to calculate the array reflection

and transmission coefficients:

R=2 -1 ITI = (1 - 1R13)1/2 (34)
z' + 1

where z' = ZZN for the short circuit and z' = z-ZN for the open circuit

case. Good agreement with experiment is found in Fig. 9 where the

transmission coefficient (T = 10'10310(M21)) of this 100 electrode array is

plotted versus frequency.

The device transmission coefficient (M21) is a complex number whose phase
describes the dispersion of finite length reflector and transducer arrays.

The fractional acoustic transmission coefficient phase shift (A¢21/¢21) is

defined as

A% . /L, - @,

p) (35)
21 Nﬂf/fb

where Nrrf/f° is the open surface phase delay. This fractional phase shift i
is equal to the fractional shift in velocity Av/v and is compared with

experiment (duty factor = N = 0.5) [22] in Fig. 10 for an 80 electrode

device on Y-Z lithium niobate at three duty factors. This calculation is
for three possible electrode connection sequences: all connected (shorted)
in Fig. 10a, every other electrode connected together (open circuit IDT) in
Fig. 10b, and all electrodes unconnected (isolated array) in Fig. 10c. The
highly dispersive nature of the curves near the fundamental and second

harmonic is evidence of a large number of reflections in the arrays. This

region is denoted as a stopband. It is interesting to note that the

-
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shorted and open transducers (Fig. 10a and b, respectively) have identical
dispersion characteristics out of this band. The value of Av/v at the
fundamental stopband corresponds to the 1.7% fractional shift in frequency
evident in all the devices discussed (for example, see Fig. 6). All three
connection sequences display the presence of a second harmonic stopband

which is also shifted downward in frequency.

D. Mechanically Loaded Transducers

A recently derived method of calculating the mechanical scattering
coefficients [27,28] allows this scattering matrix cascading process to
include the effects of elastic loading, mass loading, and stored energy in
thick electrodes, grooves and buried electrodes. The mechanical
coefficients (as in the piezoelectric case (2a,b)) are reflection
coefficient and transmission phase shift for the unit cell and are composed
of contributions due to linear (impedance mismatch) and quadratic (stored

energy) effects
2
M0y pech = J(r1(h/x) + rz(h/k) )

(36)
101 meen * J(8(BA) + & (/NP

and at the present are valid for frequencies about the harmonics. The

derivation of these constants (r,, r,, 8,, 4,) is found in reference 28

(specifically equations 24 and 26) and first order examples of the
calculations are found in reference 27. The mechanical coefficients (36)

are added to the initial piezoelectric scattering coefficients (from

(2a,b), where jA = jA from m'21) to give the composite terms

21 plezo

' -
B'11 total = P'11 ptezo * P11 mech

N (37)

21 total = B2 piezo * 331 mech
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which are used in the energy balance (5,6), thereby effecting a complete

scattering analysis.

An example of the mechanical scattering contribution is shown in

Fig. 11 where the calculated input radiation conductance is plotted versus

frequency. This is compared with experiment [24] for a 10-pair, single
electrode interdigital transducer (duty factor = 0.5). The major
reflection mechanism of the transducer in Fig. 11a with 1500 g thick
aluminum electrodes is pilezoelectric loading (localized shorting of the
traveling potenial wave under the electrode). The effect of combined

piezoelectric and mechanical loading is shown in Fig. 11b where 750 i of
gold has been added to the transducer of Fig. 11a. Although the calculated
magnitudes are high, the frequency shifts of the upper zeroes are
accurately predicted by this analysis. Many authors have attributed
lowered experimental magnitudes to scattering into bulk waves and viscous

dampening of the surface wave.
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V. Transducers with Floating Electrodes

Transducers whose electrodes are individually connected to external
loads and/or each other are analyzed in a straight-forward manner using
this generalized scattering matrix approach. The discussion of section
III. dealt with electrodes whose voltages were lknown apriori, whereas this
section deals with transducers which contain contain floating (unconnected)
electrodes in combination with connected electrodes. Reflector arrays of
floating (isolated) electrodes have been treated in section IV.D. where the
current through each electrically unloaded electrode was a known value
(zero). This section addresses itself to a similar problem (each floating
alectrode current equals zero), but uses circuit analysis techniques to
determine the unknown voltages. These voltages are then used to derive the
3 x 3 matrix (M] by solving for the individual scattering parameters in a
manner similar to the compacting sequence of section III. Although the
floating electrodes discussed are electrically isolated, this is in fact a
specific case of electrodes which are externally electrically loaded. In
another case, the electrodes could be connected in groups to a load (load cur-

rent = -VTYL) or to individual loads YLi’ where the load currents equal 'viYLi'

As an example, consider a solid electrode interdigital transducer with
a floating electrode placed between each transducer electrode (the
split-isolated transducer, Fig. 12 inset). The relationships between the
unconnected electrode voltages (voltage tap weights) are not lknown, as was
the case for the transducer discussed in section III., therefore the
current (ie. admittance/voltage) of an electrode in this array of unknown

voltages cannot be calculated directly (as was the case in (11)).
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The derivation of {M] begins by cascading single electrode matrices

[(m] which have no capacitive electrostatic admittance (C=0). This general
matrix (similar to (22))

By 7 [m iz myg @y - o T} AT
Ayt Byy Byp Wy3 My - - -| | By
T myy By myy mgy .| Yy
I, myy My By By - o o[ V2

(38)

models all the relationships (except capacitive coupling) between the
electrodes. The admittance terms enclosed by the dashed line are the
cascaded complex admittances (G, + jB,). Added to this sub-matrix is an
inter-electrode capacitive admittance (calculated from equations (8), (9)

in [2]) which models the capacitive coupling between the electrodes.

The first step in the solution of the floating electrode voltages is
to combine the rows and columns associated with the transducer (connected)
electrodes. This is done using the same technique as in section III.B.
The matrix is now a function of two types of acoustically induced
potentials, a terminal (transducer) voltage (VT) and a set of floating

electrode voltages (VF1 through VFr).

v ARG




Note, there may be more than one terminal voltage if the transducer has
multiple groups of taps connected together (ie. group-type

unidirectional).

An examination of (39) shows that the induced currents (and hence, the
floating electrode voltages) are functions of each other, the terminal
voltage and the incident acoustic waves. There are three different sets of
floating voltages corresponding to the three possible excitation sources
(VT, A1, BN+1)’ each taken one at a time. For example, the value of M13 is
defined as the traveling acoustic wave emerging from the left port due to

the terminal voltage applied with the incident waves absent.

The second step is to use one of the excitation sources as the
appropriate bondary condition and solve the admittance sub-matrix for the
three sets of floating voltages. This is done by multiplying the first
three columns (39) by the appropriate boundary conditions (each 0 or 1).
The Gauss-Seidel iteration method [25] is used three separate times to
solve this new f by f+3 sub-matrix for the unknown floating electrode

voltages. The inversion of the admittance matrix is not required and
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consequently very large matrices may be analyzed.

The third step is to solve for the device matrix [M] by using the
floating electrode voltages in (40) to combine the columns and rows as in
section III. (for an unconnected electrode bi is 0). This is done for each

of the three excitation sources.

As an example, consider the solution of the first column in the device

matrix (M M

11° These scattering parameters are defined as the twc

210 M3q)-
acoustic waves and terminal current produced by an incident acoustic wave
from the left when the device is shorted (in this split-isolated case, a

shorted transducer) and the incident wave from the right is not present.

Let BN+1 and VT equal zero and the incident wave (A1) equal one.
B1 By By Bygy Wy - 71 1 'w
Ayt Bpy Opp Up3 Doy 0
I
T m31 m32 m33 m3u 0
0 Byq Dyp Byg By oo - | VR
= (+0)

After multiplication of the first three columns (accounting for the

boundary conditions) the sub matrix is
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Ty 00 my, Byg Wyg .- Wy p,3
ms1 0 0 msu m55 m56 . e s m5,f+3
Mgy O 0 mgy Mgg Mg - - - Mg py3
. . . . (41)

f1 O 0 Bey mfs Beg - - - mf,f+3

et

After solving the floating voltages from these f equations, the desired
coefficients are the first three rows (m=1, 2, 3) multiplied by the

external boundary conditions and the potentials:

M11 =z m11'1 + m, %0 + m %0 + mm'VF1 e e+ mu.*vFf

12 13
= » » *
M21 = m21*1 + m22*0 * Moy 0+ Lo VF‘I + ...+ D, va‘ 42)
= » » »
M31 = m31*1 + m32*0 + mgg 0+ mg), VF1 ..+ Mg va

Similar steps are taken to derive the other six device matrix [M]

parameters. This matrix

B, Myg My Mgt 4y
Ayer[=[M21 Maz Ma3 | By (43)
Ir M3y Mgy M3z ||Vp |

completely defines the transducer with floating electrodes and is used to

derive the electrically loaded parameters via (29-31).
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A comparison of the calculated acoustic reflection coefficient with
that measured for a 20 wavelength split-isolated transducer (duty factor =
0.5) on Y-Z lithium niobate (Fig. 12) [14] shows good agreement with

experiment for the cases of short (rsc = M11) and open circuit (roc = M

+

1
M13M31/M33, from (31)) transducers. The difference between experimental

and calculated magnitudes can be attributed to viscous damping and
surface wave scattering into bulk waves which are not reflected.
Nonetheless, the analysis has predicted the reflection coefficient shape

and null frequencies quite well.
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VI. Conclusion

This work has modified and corrected the phased periodic array
scattering parameters for use as a single electrode (unit cell) scattering
matrix. The analytical expressions upon which this matrix is based are
functions of material constants, electrode geometry and frequency. These
single electrode, three port scattering matrices are acoustically cascaded
to produce an array scattering matrix which completely describes the
device, be it reflector, transducer or combination. The analysis takes
into account the effects of both piezoelectric and mechanical scattering
and provides all device transfer functions versus frequency. By virtue of
the scattering matrix approach, the final 3-port matrix includes all finger
interactions such as acoustic reflections and electrical regeneration
regardless of individual electrode circuitry. The calculation is a
straight-forward procedure and is applicable to any uniform beam-width,
periodic electrodg configuration (including the case of transducers with
floating electrodes). Good agreement with experimental data confirms this

approach to be a universal and accurate analysis tool.
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Appendix I.

A. Derivation of radiation conductance (Ga)

The conservation of energy for a lossless symmetrical interdigital

electrode requires the electrical input power to equal the total acoustic

output power. That is, with a voltage V applied

2 2 |2 ] l2
Ga V = Re(m33)l = :V m13l + lv m21l

— (A1)
2 2 2 z° 2 Z0
dividing both sides by_!f gives
2
» m »
m,, m m
G,=_13 13 , _23 23 (A2)
29 2y
laci # ]
replacing m 13 and m 23 with
-Z, m -Z, m
m13 = 0 ™3 m23 = 0 732 (A3)
2 2
from appendix I. B. gives equation (7)
e » . AG)
a® -.5(m13m 31 + Oy3m 32). (

R Y

lﬁpul
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B. Derivation of the relationship between m13 and m31

The relationship between mixed units and pure units scattering
matrices has been discussed for the two port case by Viggh [26]. This
appendix extends his work to the three port case in order to derive the
relationship between the mixed units m13 and m31. For clarity of

presentation, the mixed units and pure acoustic scattering matrices will be

designated by [m] and [s], respectively.

The variables of the mixed units electrical port are voltage and

current. Their relationship to an acoustic representation is via

(AS5)

where zo is the electro-acoustic charactersitic impedance (8). The problem
is to write the three port acoustic scattering matrix (where a; and bi are

the input and output acoustic wave potentials, respectively)

b Sy %12 %13 | | 24 k
B2 |7 (%21 %22 %23 | | 22 (A6)
. .

3 331 932 333 a3

in terms of the mixed units matrix (similar to (1))

5 Byq Byp O43 34

B2 = [ B2y Bap Tpg 3, (A7) '

13 ] [®31m32 933 ] V3

L g A




Starting with the third mixed units equation, insert (AS) for the current

and voltage

b3 ® T3ydy + B3p3, + My3(ag + by)
0

Rearranging terms and solving for b3 produces the third acoustic scattering
equation
-Z -2 1-2
by = 0"31 a; + Tfo32 a, + P33 o (A9)
1+2

The next step uses the first mixed equation to produce the first acoustic

equation

By = @3, + myp3, + mygv, (A10)

= M,a, + m, 53, + m13(a3 + b3).

From (A6) we know

b3

331a1 + 332a2 + 333a3. (all)

and therefore,

b1 = (m11 + m13331)a1 + (m12 + m13332)a2 + m13(1 + 333)33

(A12)

A similar equation exists for b

2.
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In summary, the acoustic scattering matrix [s] (A6) in terms of the

mixed units representation is

=
— — rm— —

j
b | & | (myy + By3844) (my, + my9383,) m23(1+s33) a,
by “Zom3, ~Zom3, 1-Zom33 ay
1+2 1+2 1+2
] | T3 0™33 o"‘33_J ]
(Al13)
A symmetrical, lossless, reciprocal 3-port has the property that 313 =
S3- Therefore, using the transformation (A13) we find
2301+ 353) ~Zo8q, (Alda)
1020533
and
M3 2, -Zymy, C (Al4b)
producing the desired result
m,., = ~20 O3q° (A15)
13 °

2
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Appendix II. Scattering Matrix Cascading

The problem addressed in this appendix is to find the resultant
acoustic potentials 31, A3 and the currents produced for the case where the
incident acoustic potentials A, By and the voltages applied are known. In
this case the imaginary admittance is known and the largest matrix is N+2

by 3.

The first scattering matrix (which could be the entire matrix [M] to

the left of this point) is written in equation form as

31 = M11A1 + M1252 + M13VT
A2 = H21A + M22B + M23 T (Al6)
I, =

1 M3 A, + M3 B, + M33 T

where the M13 have been multiplied by the tap weight (ie. the voltage
applied as a fraction of the terminal voltage). The set of equations
characterizing the tap to be appended is

32 = m11A2 +m B, +m.,V

1283 * B3V

Al
Ay = myihy + myyBs + myaVy 417
12 = m31A2 + m3283 + m33VT

Comparing the matrix equations shows that there are two equations that

contain A, in terms of B, and the known quantities (incident acoustic waves
and voltage tap weights). These are solved as follows, taking the second

set first

Bz = m11A2 +* m1283 + m1 3v0r (A18a)

inserting an equation for A2 gives

52 z m11(M21A1 + HZZBZ + M23) + m1283 + m13VT (A18b)

P :O.r-'v.’wﬂl ﬂ"ftt
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and

? B, = my (M54,

TP T SP

+ M B

23) + oy, 3 * m13VT

£ 1 -

which is written as

By1M55

is written as

A

2=
where
Dy = Myy + My,
D2 = M350,
Dy = MpCy + M

input parameters

[
W

= M11A1 + M

>
’

L]
[l

= M31A1 + M

V]
(]

m31(D1A1

,Ldmm..:ns. L0 R L e e aie feae <

By = CyAy + CBy + CoVy
where
¢, = MM
I 1 - m11M22
} C, = 042
: V- oMy,
Cy = myMpy + 15V
V- myM,,
Similarly
AZ = M21A1 + M B, + M

2282 + Ma3Vyp

C

23

12(C1A1 + CZB3 + C3) + M13VT

+ B3D2 + D3) + m2233 + m23VT
32(C1A1 + CZB3 + C3) + M33VT
+ DZB3 L D3) +* m3283 + m33VT

-

gt by dd u\'#i%‘qﬁu‘r e
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(A18¢)

(A19)

(A20a)

(A20b)

(A20c)

(A2la)

(A21Db)

(A22a)

(A22b)

(A22¢)

{ These solutions are inserted into the proper equations in the two matrices

(A6, Al7) and a new 3 by 4 array matrix is created in terms of the new

(A23)
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Therefore a new M matrix of the form
Myg + CiMyp  CMypp CaMqp + Myg
D n, Domyy + m Dy + M
1721 2721 22 3721 23 (A24)
M3g + CM3p  CMyo M3z + M33
D
| Dim3y Dogy + M3 Dymgy + mgg

has been created from the original two scattering matrices. This matrix
| relates the input acoustic potentials (A1,83) and the terminal voltage
applied (VT) to the output acoustic potentials (A3, 51) and the currents

produced. The procedure can be carried out for N taps with a resulting N«+2

P E

by 3 scatter matrix for the entire array.

2o bevid gt
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